CO。の資源化を実現するシングルナノ触媒の開発

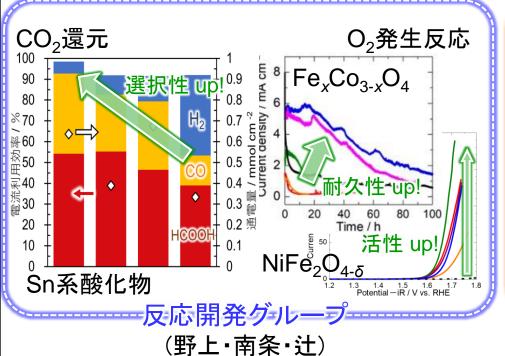
光-電極触媒 数 nmの結晶性複合酸化物 逆ミセル (RM) 有用な 担持 化学物質へ! 開裂。 \sim **HCOOH** 前駆体超微粒子 相互作用 酸化物担体 (1 nm以下)

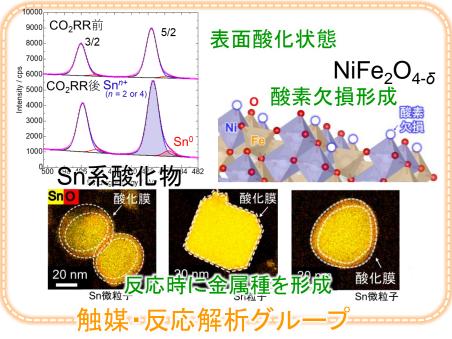
基幹原料

超薄膜 超微粒子 担体の表面電位 (<5 nm) $(\sim 5 \text{ nm})$

結晶構造、組成を拡張 ミラーライト型 □ブスカイト型

二酸化炭素




温室効果ガス

地球温暖化

2022年度の主な研究成果

触媒設計・合成グループ (辻・増井・星) スピネル型NiFe₂O_{4-δ}超微粒子 Sn系酸化物 ブラウンミラーライト型Ca₂FeCoO₅ DFT計算 Co, Fe位置 電子状態密度 解明

(薄井•道見•菅沼)